On the maximal weight of (p,q)-ary chain partitions with bounded parts

Filippo Disanto 1 Laurent Imbert 2 Fabrice Philippe 3
2 ECO - Exact Computing
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 ESCAPE - Systèmes complexes, automates et pavages
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : A (p,q) -ary chain is a special type of chain partition of integers with parts of the form paqb for some fixed integers p and q. In this note, we are interested in the maximal weight of such partitions when their parts are distinct and cannot exceed a given bound m. Characterizing the cases where the greedy choice fails, we prove that this maximal weight is, as a function of m, asymptotically independent of max(p,q), and we provide an efficient algorithm to compute it.
Type de document :
Article dans une revue
Integers : Electronic Journal of Combinatorial Number Theory, State University of West Georgia, Charles University, and DIMATIA, 2014, 14, pp.A37. 〈http://www.integers-ejcnt.org/vol14.html〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01104898
Contributeur : Laurent Imbert <>
Soumis le : lundi 19 janvier 2015 - 14:11:27
Dernière modification le : jeudi 11 janvier 2018 - 06:27:05

Identifiants

  • HAL Id : lirmm-01104898, version 1
  • ARXIV : 1212.4370v2

Collections

Citation

Filippo Disanto, Laurent Imbert, Fabrice Philippe. On the maximal weight of (p,q)-ary chain partitions with bounded parts. Integers : Electronic Journal of Combinatorial Number Theory, State University of West Georgia, Charles University, and DIMATIA, 2014, 14, pp.A37. 〈http://www.integers-ejcnt.org/vol14.html〉. 〈lirmm-01104898〉

Partager

Métriques

Consultations de la notice

98