Enhancing Fault Tolerance of Autonomous Mobile Robots

Abstract : Experience demonstrates that autonomous mobile robots running in the field in a dynamic environment often breakdown. Generally, mobile robots are not designed to efficiently manage faulty or unforeseen situations. Even if some research studies exist, there is a lack of a global approach that really integrates dependability and particularly fault tolerance into the mobile robot design. This paper presents an approach that aims to integrate fault tolerance principles into the design of a robot real-time control architecture. A failure mode analysis is firstly conducted to identify and characterize the most relevant faults. Then the fault detection and diagnosis mechanisms are explained. Fault detection is based on dedicated software components scanning faulty behaviors. Diagnosis is based on the residual principle and signature analysis to identify faulty software or hardware components and faulty behaviors. Finally, the recovery mechanism, based on the modality principle, proposes to adapt the robot's control loop according to the context and current operational functions of the robot. This approach has been applied and implemented in the control architecture of a Pioneer-P3DX mobile robot.
Type de document :
Article dans une revue
Robotics and Autonomous Systems, Elsevier, 2015, 68, pp.140-155. 〈http://www.journals.elsevier.com/〉. 〈10.1016/j.robot.2014.12.015〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01241181
Contributeur : Karen Godary-Dejean <>
Soumis le : jeudi 10 décembre 2015 - 09:52:18
Dernière modification le : jeudi 11 janvier 2018 - 06:26:17
Document(s) archivé(s) le : samedi 29 avril 2017 - 11:07:25

Fichier

RAS_Soumise_Publiable.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Didier Crestani, Karen Godary-Dejean, Lionel Lapierre. Enhancing Fault Tolerance of Autonomous Mobile Robots. Robotics and Autonomous Systems, Elsevier, 2015, 68, pp.140-155. 〈http://www.journals.elsevier.com/〉. 〈10.1016/j.robot.2014.12.015〉. 〈lirmm-01241181〉

Partager

Métriques

Consultations de la notice

110

Téléchargements de fichiers

324