On the number of prime factors of an odd perfect number - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Journal Articles Mathematics of Computation Year : 2014

On the number of prime factors of an odd perfect number

Pascal Ochem
Michael Rao

Abstract

Let ω(n) and Ω(n) denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that an odd perfect number N is of the form N = pᶱm² where p ≡ e ≡ 1 (mod 4), p is prime, and p ∤ m. This implies that Ω(N) ≥ 2ω(N) − 1. We. We prove that Ω(N) ≥ (18ω(N) −31) / 7andΩ(N) ≥ 2ω(N) + 51.

Dates and versions

lirmm-01263897 , version 1 (28-01-2016)

Identifiers

Cite

Pascal Ochem, Michael Rao. On the number of prime factors of an odd perfect number. Mathematics of Computation, 2014, 83 (289), pp.2435-2439. ⟨10.1090/S0025-5718-2013-02776-7⟩. ⟨lirmm-01263897⟩
135 View
0 Download

Altmetric

Share

More