On the number of prime factors of an odd perfect number
Résumé
Let ω(n) and Ω(n) denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that an odd perfect number N is of the form N = pᶱm² where p ≡ e ≡ 1 (mod 4), p is prime, and p ∤ m. This implies that Ω(N) ≥ 2ω(N) − 1. We. We prove that Ω(N) ≥ (18ω(N) −31) /
7andΩ(N) ≥ 2ω(N) + 51.