On the number of prime factors of an odd perfect number - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Mathematics of Computation Année : 2014

On the number of prime factors of an odd perfect number

Pascal Ochem
Michael Rao

Résumé

Let ω(n) and Ω(n) denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that an odd perfect number N is of the form N = pᶱm² where p ≡ e ≡ 1 (mod 4), p is prime, and p ∤ m. This implies that Ω(N) ≥ 2ω(N) − 1. We. We prove that Ω(N) ≥ (18ω(N) −31) / 7andΩ(N) ≥ 2ω(N) + 51.

Dates et versions

lirmm-01263897 , version 1 (28-01-2016)

Identifiants

Citer

Pascal Ochem, Michael Rao. On the number of prime factors of an odd perfect number. Mathematics of Computation, 2014, 83 (289), pp.2435-2439. ⟨10.1090/S0025-5718-2013-02776-7⟩. ⟨lirmm-01263897⟩
137 Consultations
0 Téléchargements

Altmetric

Partager

More