Design and evaluation of a novel variable stiffness spherical joint with application to MR-compatible robot design

Abstract : In this paper, the design of a new variable stiffness spherical joint for MR-compatible robotics is presented. It is based on the use of prestressed cable-driven mechanisms in singular configurations to provide large stiffness variation ranges, including zero stiffness configuration as required by the medical context. An original implementation is proposed, with a prestress adjustment system using pneumatic energy and taking advantage of multimaterial additive manufacturing. The proposed component combines compactness, MR-compatibility and is lightweight. The system is evaluated on a dedicated experimental setup with validation of the expected behavior, with in particular a very large achievable range of stiffnesses. The approach is effective for the design of such device and constitutes a novel solution for the design of variable stiffness devices with complex motions.
Type de document :
Communication dans un congrès
ICRA: International Conference on Robotics and Automation, May 2016, Stockholm, Sweden. 33rd IEEE International Conference on Robotics and Automation, pp.661-667, 2016, 〈https://www.icra2016.org〉. 〈10.1109/ICRA.2016.7487192〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276757
Contributeur : Salih Abdelaziz <>
Soumis le : jeudi 20 septembre 2018 - 20:29:23
Dernière modification le : samedi 1 décembre 2018 - 18:01:04

Fichier

ICRA16_0960_FI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Quentin Boehler, Marc Vedrines, Salih Abdelaziz, Philippe Poignet, Pierre Renaud. Design and evaluation of a novel variable stiffness spherical joint with application to MR-compatible robot design. ICRA: International Conference on Robotics and Automation, May 2016, Stockholm, Sweden. 33rd IEEE International Conference on Robotics and Automation, pp.661-667, 2016, 〈https://www.icra2016.org〉. 〈10.1109/ICRA.2016.7487192〉. 〈lirmm-01276757〉

Partager

Métriques

Consultations de la notice

241

Téléchargements de fichiers

6