A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining

Saber Salah 1 Reza Akbarinia 1 Florent Masseglia 1
1 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : The discovery of informative itemsets is a fundamental building block in data analytics and information retrieval. While the problem has been widely studied, only few solutions scale. This is particularly the case when i) the data set is massive, calling for large-scale distribution, and/or ii) the length k of the informative itemset to be discovered is high. In this paper, we address the problem of parallel mining of maximally informative k-itemsets (miki) based on joint entropy. We propose PHIKS (Parallel Highly Informative K-ItemSet) a highly scalable, parallel miki mining algorithm. PHIKS renders the mining process of large scale databases (up to terabytes of data) succinct and effective. Its mining process is made up of only two efficient parallel jobs. With PHIKS, we provide a set of significant optimizations for calculating the joint entropies of miki having different sizes, which drastically reduces the execution time, the communication cost and the energy consumption, in a distributed computational platform. PHIKS has been extensively evaluated using massive real-world data sets. Our experimental results confirm the effectiveness of our proposal by the significant scale-up obtained with high itemsets length and over very large databases.
Document type :
Journal articles
Complete list of metadatas

Cited literature [29 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01288571
Contributor : Florent Masseglia <>
Submitted on : Tuesday, March 15, 2016 - 12:26:50 PM
Last modification on : Saturday, February 23, 2019 - 7:06:02 PM
Long-term archiving on : Thursday, June 16, 2016 - 10:38:55 AM

File

KAIS_Salah_2016.pdf
Files produced by the author(s)

Identifiers

Citation

Saber Salah, Reza Akbarinia, Florent Masseglia. A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining. Knowledge and Information Systems (KAIS), Springer, 2017, 50 (1), pp.1-26. ⟨10.1007/s10115-016-0931-2⟩. ⟨lirmm-01288571⟩

Share

Metrics

Record views

674

Files downloads

851