Skip to Main content Skip to Navigation
Conference papers

Robotic Test Bench for CubeSat Ground Testing: Concept and Satellite Dynamic Parameter Identification

Abstract : This paper introduces a novel concept of an air bearing test bench for CubeSat ground testing together with the corresponding dynamic parameter identification method. Contrary to existing air bearing test benches, the proposed concept allows three degree-of-freedom unlimited rotations and minimizes the influence of the test bench on the tested CubeSat. These advantages are made possible by the use of a robotic wrist which rotates air bearings in order to make them follow the CubeSat motion. Another keystone of the test bench is an accurate balancing of the tested CubeSat. Indeed, disturbing factors acting on the satellite shall be minimized, the most significant one being the gravity torque. An efficient balancing requires the CubeSat center of mass position to be accurately known. Usual techniques of dynamic parameter identification cannot be directly applied because of the frictionless suspension of the CubeSat in the test bench and, accordingly, due to the lack of external actuation. In this paper, a new identification method is proposed. This method does not require any external actuation and is based on the sampling of free oscillating motions of the CubeSat mounted on the test bench.
Document type :
Conference papers
Complete list of metadata

Cited literature [19 references]  Display  Hide  Download
Contributor : Irina Gavrilovich Connect in order to contact the contributor
Submitted on : Tuesday, May 3, 2016 - 11:05:29 AM
Last modification on : Monday, October 11, 2021 - 1:24:26 PM
Long-term archiving on: : Tuesday, May 24, 2016 - 6:22:58 PM


Files produced by the author(s)




Irina Gavrilovich, Sébastien Krut, Marc Gouttefarde, François Pierrot, Laurent Dusseau. Robotic Test Bench for CubeSat Ground Testing: Concept and Satellite Dynamic Parameter Identification. IROS: Intelligent RObots and Systems, Sep 2015, Hamburg, Germany. pp.5447-5453, ⟨10.1109/IROS.2015.7354148⟩. ⟨lirmm-01310817⟩



Record views


Files downloads