Scientific Workflow Scheduling with Provenance Support in Multisite Cloud

Ji Liu 1, 2, 3 Esther Pacitti 3, 1 Patrick Valduriez 3, 1, * Marta Mattoso 4
* Auteur correspondant
3 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Recently, some Scientific Workflow Management Systems (SWfMSs) with provenance support (e.g. Chiron) have been deployed in the cloud. However, they typically use a single cloud site. In this paper, we consider a multisite cloud, where the data and computing resources are distributed at different sites (possibly in different regions). Based on a multisite architecture of SWfMS, i.e. multisite Chiron, we propose a multisite task scheduling algorithm that considers the time to generate provenance data. We performed an experimental evaluation of our algorithm using Microsoft Azure multisite cloud and two real-life scientific workflows, i.e. Buzz and Montage. The results show that our scheduling algorithm is up to 49.6% better than baseline algorithms in terms of execution time.
Type de document :
Communication dans un congrès
VECPAR, Jun 2016, Porto, Portugal. 12th International Meeting on High Performance Computing for Computational Science, pp.8, 2016, 〈http://vecpar.fe.up.pt/2016/〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01342190
Contributeur : Patrick Valduriez <>
Soumis le : mardi 5 juillet 2016 - 14:59:35
Dernière modification le : jeudi 24 mai 2018 - 15:59:21
Document(s) archivé(s) le : jeudi 6 octobre 2016 - 13:08:33

Fichier

VECPAR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01342190, version 1

Collections

Citation

Ji Liu, Esther Pacitti, Patrick Valduriez, Marta Mattoso. Scientific Workflow Scheduling with Provenance Support in Multisite Cloud. VECPAR, Jun 2016, Porto, Portugal. 12th International Meeting on High Performance Computing for Computational Science, pp.8, 2016, 〈http://vecpar.fe.up.pt/2016/〉. 〈lirmm-01342190〉

Partager

Métriques

Consultations de la notice

916

Téléchargements de fichiers

389