Humanoid and Human Inertia Parameter Identification Using Hierarchical Optimization - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue IEEE Transactions on Robotics Année : 2016

Humanoid and Human Inertia Parameter Identification Using Hierarchical Optimization

Jovana Jovic
  • Fonction : Auteur
  • PersonId : 959444
Adrien Escande
Ko Ayusawa
  • Fonction : Auteur
  • PersonId : 1343929
Eiichi Yoshida
  • Fonction : Auteur
  • PersonId : 841545

Résumé

We propose a method for estimation of humanoid and human links' inertial parameters. Our approach formulates the problem as a hierarchical quadratic program by exploiting the linear properties of rigid body dynamics with respect to the inertia parameters. In order to assess our algorithm, we conducted experiments with a humanoid robot and a human subject. We compared ground reaction forces and moments estimated from force measurements with those computed using identified inertia parameters and movement information. Our method is able to accurately reconstruct ground reaction forces and force moments. Moreover, our method is able to estimate correctly masses of the robots links and to accurately detect additional masses placed on the human subject during the experiments.
Fichier principal
Vignette du fichier
Jovic-identificaiton-ieee-tro2016.pdf (947.05 Ko) Télécharger le fichier

Dates et versions

lirmm-01348410 , version 1 (02-12-2020)

Identifiants

Citer

Jovana Jovic, Adrien Escande, Ko Ayusawa, Eiichi Yoshida, Abderrahmane Kheddar, et al.. Humanoid and Human Inertia Parameter Identification Using Hierarchical Optimization. IEEE Transactions on Robotics, 2016, 32 (3), pp.726-735. ⟨10.1109/TRO.2016.2558190⟩. ⟨lirmm-01348410⟩
312 Consultations
471 Téléchargements

Altmetric

Partager

More