Ranking Constraints


Abstract : We need to reason about rankings of objects in a wide variety of domains including information retrieval, sports tournaments, bibliometrics, and statistics. We propose a global constraint therefore for modeling rankings. One important application for rankings is in reasoning about the correlation or uncorrelation between sequences. For example, we might wish to have consecutive delivery sched- ules correlated to make it easier for clients and em- ployees, or uncorrelated to avoid predictability and complacence. We therefore also consider global correlation constraints between rankings. For both ranking and correlation constraints, we propose efficient filtering algorithms and decompositions, and report experimental results demonstrating the promise of our proposed approach.
Type de document :
Communication dans un congrès
IJCAI: International Joint Conference on Artificial Intelligence, Jul 2016, New York City, United States. 25th International Joint Conference on Artificial Intelligence, pp.705-711, 2016, 〈http://ijcai-16.org/〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01374715
Contributeur : Joël Quinqueton <>
Soumis le : vendredi 30 septembre 2016 - 21:26:02
Dernière modification le : lundi 15 janvier 2018 - 12:20:02
Document(s) archivé(s) le : samedi 31 décembre 2016 - 16:39:47

Fichier

bhkkw-ijcai16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01374715, version 1

Citation

Christian Bessière, Emmanuel Hébrard, George Katsirelos, Toby Walsh, Zeynep Kiziltan. Ranking Constraints
 . IJCAI: International Joint Conference on Artificial Intelligence, Jul 2016, New York City, United States. 25th International Joint Conference on Artificial Intelligence, pp.705-711, 2016, 〈http://ijcai-16.org/〉. 〈lirmm-01374715〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

98