Hierarchical MRI segmentation of the musculoskeletal system using texture analysis and topologigcal constraints - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2014

Hierarchical MRI segmentation of the musculoskeletal system using texture analysis and topologigcal constraints

Résumé

In this paper, we introduce a novel approach for segmenting MRI images into the three classes of tissue of the musculoskeletal system : bone, fat and muscle. This approach is guided by a prior anatomical knowledge modeled using a tree structure. This tree aims at representing the natural nested topology of the musculoskeletal anatomy, and is used to hierarchically segment images. At each level of the hierarchy, a standard two-classes classification process is performed using texture-based descriptors and support vector machines (SVM). The classification is refined using topological constraints (connexity and neighborhood) derived from anatomy. We evaluate the performance of our approach by comparing the constrained approach with the original hierarchical algorithm. We achieve an excellent classification(78%) and shows that the use of texture analysis combined with simple topological constraints can improve the segmentation.
Fichier non déposé

Dates et versions

lirmm-01379580 , version 1 (11-10-2016)

Identifiants

Citer

Ahmed Salmi, Benjamin Gilles, William Puech, Mohammed El Hassouni, Mohammed Rziza. Hierarchical MRI segmentation of the musculoskeletal system using texture analysis and topologigcal constraints. EUVIP: European Workshop on Visual Information Processing, Dec 2014, Paris, France. pp.1-6, ⟨10.1109/EUVIP.2014.7018396⟩. ⟨lirmm-01379580⟩
112 Consultations
0 Téléchargements

Altmetric

Partager

More