Well-quasi-ordering $H$-contraction-free graphs

Abstract : A well-quasi-order is an order which contains no infinite decreasing sequence and no infinite collection of incomparable elements. In this paper, we consider graph classes defined by excluding one graph as contraction. More precisely, we give a complete characterization of graphs H such that the class of H-contraction-free graphs is well-quasi-ordered by the contraction relation. This result is the contraction analogue on the previous dichotomy theorems of Damsaschke [Induced subgraphs and well-quasi-ordering, Journal of Graph Theory, 14(4):427-435, 1990] on the induced subgraph relation, Ding [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489-502, 1992] on the subgraph relation, and B{\l}asiok et al. [Induced minors and well-quasi-ordering, ArXiv e-prints, 1510.07135, 2015] on the induced minor relation.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2017, In press. 〈10.1016/j.dam.2017.02.018〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01486775
Contributeur : Jean-Florent Raymond <>
Soumis le : mercredi 4 octobre 2017 - 15:35:36
Dernière modification le : mardi 24 avril 2018 - 13:52:19

Fichier

ctr-wqo.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck. Well-quasi-ordering $H$-contraction-free graphs. Discrete Applied Mathematics, Elsevier, 2017, In press. 〈10.1016/j.dam.2017.02.018〉. 〈lirmm-01486775〉

Partager

Métriques

Consultations de la notice

244

Téléchargements de fichiers

26