Skip to Main content Skip to Navigation
Journal articles

Well-quasi-ordering $H$-contraction-free graphs

Marcin Kamiński 1 Jean-Florent Raymond 2, 1 Théophile Trunck 3
2 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 MC2 - Modèles de calcul, Complexité, Combinatoire
LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : A well-quasi-order is an order which contains no infinite decreasing sequence and no infinite collection of incomparable elements. In this paper, we consider graph classes defined by excluding one graph as contraction. More precisely, we give a complete characterization of graphs H such that the class of H-contraction-free graphs is well-quasi-ordered by the contraction relation. This result is the contraction analogue on the previous dichotomy theorems of Damsaschke [Induced subgraphs and well-quasi-ordering, Journal of Graph Theory, 14(4):427-435, 1990] on the induced subgraph relation, Ding [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489-502, 1992] on the subgraph relation, and B{\l}asiok et al. [Induced minors and well-quasi-ordering, ArXiv e-prints, 1510.07135, 2015] on the induced minor relation.
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download
Contributor : Jean-Florent Raymond <>
Submitted on : Tuesday, June 12, 2018 - 4:37:45 PM
Last modification on : Saturday, September 11, 2021 - 3:18:21 AM


Files produced by the author(s)



Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck. Well-quasi-ordering $H$-contraction-free graphs. Discrete Applied Mathematics, Elsevier, 2018, 248, pp.18-27. ⟨10.1016/j.dam.2017.02.018⟩. ⟨lirmm-01486775v2⟩



Record views


Files downloads