Packing and covering immersion-expansions of planar sub-cubic graphs
Résumé
A graph H is an immersion of a graph G if H can be obtained by some subgraph G after lifting incident edges. We prove that there is a polynomial function f : N × N → N, such that if H is a connected planar sub-cubic graph on h > 0 edges, G is a graph, and k is a non-negative integer, then either G contains k vertex/edge-disjoint subgraphs, each containing H as an immersion, or G contains a set F of f (k, h) vertices/edges such that G \ F does not contain H as an immersion.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...