TARS: An Array Model with Rich Semantics for Multidimensional Data - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2017

TARS: An Array Model with Rich Semantics for Multidimensional Data

Résumé

Relational DBMSs have been shown to be inefficient for scientific data management. One main reason is the difficulty to represent arrays, which are frequently adopted as a data model for scientific datasets representation. Array DBMSs, e.g. SciDB, were proposed to bridge this gap, building on a native array representation. Unfortunately, important scientific applications, such as numerical simulation, have additional requirements , in particular to deal with mesh topology and geometry. First, transforming simulation results datasets into DBMS array format incurs in huge latency due to the fixed format of array DBMSs layouts and data transformations to adapt to mesh data characteristics. Second, simulation applications require data visualization or computing uncertainty quantifi-cation (UQ), both requiring metadata beyond the simulation output array. To address these problems, we propose a novel data model called TARS (Typed ARray Schema), which extends the basic array data model with typed arrays. In TARS, the support of application dependent data characteristics , such as data visualization and UQ computation, is provided through the definition of TAR objects, ready to be manipulated by TAR operators. This approach provides much flexibility for capturing internal data layouts through mapping functions, which makes data ingestion independent of how simulation data has been produced, thus minimizing ingestion time. In this paper, we present the TARS data model and illustrate its use in the context of numerical simulation application.
Fichier principal
Vignette du fichier
TARS-paper19.pdf (992.39 Ko) Télécharger le fichier

Dates et versions

lirmm-01620376 , version 1 (20-10-2017)

Identifiants

  • HAL Id : lirmm-01620376 , version 1

Citer

Hermano Lustosa, Noel Lemus, Fabio Porto, Patrick Valduriez. TARS: An Array Model with Rich Semantics for Multidimensional Data. Forum and Demos at ER, Nov 2017, Valencia, Spain. pp.114-127. ⟨lirmm-01620376⟩
353 Consultations
324 Téléchargements

Partager

More