Interval-based reconstruction for uncertainty quantification in PET

Abstract : A new directed interval-based tomographic reconstruction algorithm, called non-additive interval based expectation maximization (NIBEM) is presented. It uses non-additive modeling of the forward operator that provides intervals instead of single-valued projections. The detailed approach is an extension of the maximum likelihood—expectation maximization algorithm based on intervals. The main motivation for this extension is that the resulting intervals have appealing properties for estimating the statistical uncertainty associated with the reconstructed activity values. After reviewing previously published theoretical concepts related to interval-based projectors, this paper describes the NIBEM algorithm and gives examples that highlight the properties and advantages of this interval valued reconstruction.
Type de document :
Article dans une revue
Physics in Medicine and Biology, IOP Publishing, 2018, 63 (3), 〈10.1088/1361-6560/aa9ea6〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01707254
Contributeur : Olivier Strauss <>
Soumis le : lundi 12 février 2018 - 16:24:34
Dernière modification le : mardi 16 octobre 2018 - 07:52:01
Document(s) archivé(s) le : lundi 7 mai 2018 - 16:52:56

Fichier

Identifiants

Citation

Florentin Kucharczak, Kevin Loquin, Irène Buvat, Olivier Strauss, Denis Mariano-Goulart. Interval-based reconstruction for uncertainty quantification in PET. Physics in Medicine and Biology, IOP Publishing, 2018, 63 (3), 〈10.1088/1361-6560/aa9ea6〉. 〈lirmm-01707254〉

Partager

Métriques

Consultations de la notice

302

Téléchargements de fichiers

4