The 2018 Signal Separation Evaluation Campaign - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2018

The 2018 Signal Separation Evaluation Campaign

Résumé

This paper reports the organization and results for the 2018 community-based Signal Separation Evaluation Campaign (SiSEC 2018). This year's edition was focused on audio and pursued the effort towards scaling up and making it easier to prototype audio separation software in an era of machine-learning based systems. For this purpose, we prepared a new music separation database: MUSDB18, featuring close to 10 h of audio. Additionally, open-source software was released to automatically load, process and report performance on MUSDB18. Furthermore, a new official Python version for the BSS Eval toolbox was released, along with reference implementations for three oracle separation methods: ideal binary mask, ideal ratio mask, and multichannel Wiener filter. We finally report the results obtained by the participants.
Fichier principal
Vignette du fichier
SiSEC2018report.pdf (850.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-01766791 , version 1 (14-04-2018)
lirmm-01766791 , version 2 (19-04-2018)

Identifiants

Citer

Fabian-Robert Stöter, Antoine Liutkus, Nobutaka Ito. The 2018 Signal Separation Evaluation Campaign. LVA/ICA: Latent Variable Analysis and Signal Separation, Jul 2018, Surrey, United Kingdom. pp.293-305, ⟨10.1007/978-3-319-93764-9_28⟩. ⟨lirmm-01766791v2⟩
611 Consultations
2186 Téléchargements

Altmetric

Partager

More