Structure and Enumeration of $K4$-minor-free links and link diagrams

Abstract : We study the class L of link types that admit a K 4-minor-free diagram, i.e., they can be projected on the plane so that the resulting graph does not contain any subdivision of K 4. We prove that L is the closure of a subclass of torus links under the operation of connected sum. Using this structural result, we enumerate L and subclasses of it, with respect to the minimal number of crossings or edges in a projection of L ∈ L. Further, we enumerate (both exactly and asymptotically) all connected K 4-minor-free link diagrams, all minimal connected K 4-minor-free link diagrams, and all K 4-minor-free diagrams of the unknot.
Type de document :
Article dans une revue
Electronic Notes in Discrete Mathematics, Elsevier, 2018, 68, pp.119-124. 〈10.1016/j.endm.2018.06.021〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01890505
Contributeur : Dimitrios M. Thilikos <>
Soumis le : lundi 8 octobre 2018 - 16:33:48
Dernière modification le : jeudi 22 novembre 2018 - 12:13:15
Document(s) archivé(s) le : mercredi 9 janvier 2019 - 16:36:54

Fichier

spknots_DMC.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Juanjo Rué, Dimitrios M. Thilikos, Vasiliki Velona. Structure and Enumeration of $K4$-minor-free links and link diagrams. Electronic Notes in Discrete Mathematics, Elsevier, 2018, 68, pp.119-124. 〈10.1016/j.endm.2018.06.021〉. 〈lirmm-01890505〉

Partager

Métriques

Consultations de la notice

84

Téléchargements de fichiers

6