Structure and Enumeration of $K4$-minor-free links and link diagrams
Abstract
We study the class L of link types that admit a K 4-minor-free diagram, i.e., they can be projected on the plane so that the resulting graph does not contain any subdivision of K 4. We prove that L is the closure of a subclass of torus links under the operation of connected sum. Using this structural result, we enumerate L and subclasses of it, with respect to the minimal number of crossings or edges in a projection of L ∈ L. Further, we enumerate (both exactly and asymptotically) all connected K 4-minor-free link diagrams, all minimal connected K 4-minor-free link diagrams, and all K 4-minor-free diagrams of the unknot.
Origin | Files produced by the author(s) |
---|
Loading...