Discovering Ordinal Attributes Through Gradual Patterns, Morphological Filters and Rank Discrimination Measures - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2018

Discovering Ordinal Attributes Through Gradual Patterns, Morphological Filters and Rank Discrimination Measures

Abstract

This paper proposes to exploit heterogeneous data, i.e. data described by both numerical and categorical features, so as to gain knowledge about the categorical attributes from the numerical ones. More precisely, it aims at discovering whether, according to a given data set, based on information provided by the numerical attributes, some categorical attributes actually are ordinal ones and, additionally, at establishing ranking relations between the category values. To that aim, the paper proposes the 3-step methodology OSACA, standing for Order Seeking Algorithm for Categorical Attributes: it first consists in extracting gradual patterns from the numerical attributes, to identify rich ranking information about the data; it then applies mathematical morphology tools, more precisely alternated filters, to induce an associated order on the categorical attributes. The third step evaluates the quality of the candidate rankings through an original measure derived from the rank entropy discrimination.
Fichier principal
Vignette du fichier
SUM2018_paper_16.pdf (309.01 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01893238 , version 1 (24-10-2018)

Identifiers

Cite

Christophe Marsala, Anne Laurent, Marie-Jeanne Lesot, Maria Rifqi, Arnaud Castelltort. Discovering Ordinal Attributes Through Gradual Patterns, Morphological Filters and Rank Discrimination Measures. SUM: Scalable Uncertainty Management, Oct 2018, Milan, Italy. pp.152-163, ⟨10.1007/978-3-030-00461-3_11⟩. ⟨lirmm-01893238⟩
254 View
230 Download

Altmetric

Share

More