Degree-constrained 2-partitions of graphs - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Journal Articles Theoretical Computer Science Year : 2019

Degree-constrained 2-partitions of graphs

Abstract

A (δ ≥ k1, δ ≥ k2)-partition of a graph G is a vertex-partition (V1, V2) of G satisfying that δ(G[Vi]) ≥ ki for i = 1, 2. We determine, for all positive integers k1, k2, the complexity of deciding whether a given graph has a (δ ≥ k1, δ ≥ k2)-partition. We also address the problem of finding a function g(k1, k2) such that the (δ ≥ k1, δ ≥ k2)-partition problem is N P-complete for the class of graphs of minimum degree less than g(k1, k2) and polynomial for all graphs with minimum degree at least g(k1, k2). We prove that g(1, k) = k for k ≥ 3, that g(2, 2) = 3 and that g(2, 3), if it exists, has value 4 or 5.

Domains

Logic [math.LO]
Fichier principal
Vignette du fichier
1801.06216.pdf (426.1 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-02011257 , version 1 (17-01-2020)

Identifiers

Cite

Jørgen Bang-Jensen, Stéphane Bessy. Degree-constrained 2-partitions of graphs. Theoretical Computer Science, 2019, 776, pp.64-74. ⟨10.1016/j.tcs.2018.12.023⟩. ⟨lirmm-02011257⟩
108 View
127 Download

Altmetric

Share

More