How Frequency Injection Locking Can Train Oscillatory Neural Networks to Compute in Phase
Abstract
Brain-inspired computing employs devices and architectures that emulate biological functions for more adaptive and energy efficient systems. Oscillatory neural networks are an alternative approach to mimicking the human brain and suitable for solving large and complex associative problems. In this work, we investigate the dynamics of coupled oscillators to implement such oscillatory neural networks. By harnessing the complex dynamics of coupled oscillatory systems, we forge a novel computation model - that is, information is encoded in the phase of oscillations. Coupled interconnected oscillators can exhibit various behaviors due to the strength of the coupling. Here we present a novel method on how to control the oscillatory states of coupled oscillators that allows them to lock in frequency with distinct phase differences. Circuit-level simulation results indicate the effectiveness of the method and its applicability to large-scale oscillatory networks for pattern recognition.
Origin | Files produced by the author(s) |
---|