Multi-Scale Modeling and Simulation Flow for Oscillatory Neural Networks for Edge Computing - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2021

Multi-Scale Modeling and Simulation Flow for Oscillatory Neural Networks for Edge Computing

Corentin Delacour
Elisabetta Corti
  • Fonction : Auteur
  • PersonId : 1067413
Madeleine Abernot
Ahmed Nejim
Thierry Gil
Siegfried Karg
Aida Todri-Sanial

Résumé

An oscillatory neural network (ONN) is a neuromorphic computing paradigm based on encoding of information into the phases of oscillators. In this paper we present an ONN whose elemental unit, the “neuron”, is implemented through a beyond-CMOS device based on vanadium dioxide (VO2). Such ONN technology provides ultra-low power solutions for performing pattern recognition tasks, and it is ideally suited for edge computing applications. However, exploring the groundwork of the beyond-CMOS ONN paradigm is mandatory premise for its industry-level exploitation. Such foundation entails the building of a holistic simulation flow from materials and devices to circuits, to allow assessment of ONN performance. In this work we report results of this advanced designing approach with special focus over the VO2 oscillator. This establishes the ground to scale up to evaluate beyond-CMOS ONN functionalities for pattern recognition.
Fichier principal
Vignette du fichier
Carapezzi-Newcas.pdf (1.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-03197160 , version 1 (22-09-2021)

Identifiants

Citer

Stefania Carapezzi, Corentin Delacour, Gabriele Boschetto, Elisabetta Corti, Madeleine Abernot, et al.. Multi-Scale Modeling and Simulation Flow for Oscillatory Neural Networks for Edge Computing. NEWCAS 2021 - 19th IEEE International New Circuits and Systems Conference, Jun 2021, Toulon, France. ⟨10.1109/NEWCAS50681.2021.9462761⟩. ⟨lirmm-03197160⟩
240 Consultations
270 Téléchargements

Altmetric

Partager

More