Oscillatory Neural Networks for Edge AI Computing - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2021

Oscillatory Neural Networks for Edge AI Computing

Résumé

In this paper, we showcase the innovative concept of implementing Oscillatory Neural Networks (ONNs) for neuromorphic computing with beyond CMOS devices based on vanadium dioxide to mimic neurons and resistors to emulate synapses. We explore ONN technology potentials from device to analog circuit-level simulations. We report that ONN behaves like an associative memory and can implement energy-based models such as Hopfield Neural Networks on edge devices. Finally, as a proof of concept, a reconfigurable digital ONN is implemented on FPGA for pattern recognition tasks.
Fichier principal
Vignette du fichier
ISVLSI_eXpress.pdf (1019.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-03229257 , version 1 (22-09-2021)

Identifiants

Citer

Corentin Delacour, Stefania Carapezzi, Madeleine Abernot, Gabriele Boschetto, Nadine Azemard, et al.. Oscillatory Neural Networks for Edge AI Computing. ISVLSI 2021 - IEEE Computer Society Annual Symposium on VLSI, Jul 2021, Tampa, United States. pp.326-331, ⟨10.1109/ISVLSI51109.2021.00066⟩. ⟨lirmm-03229257⟩
207 Consultations
693 Téléchargements

Altmetric

Partager

More