Energy Efficient Neuromorphic Computing with beyond-CMOS Oscillatory Neural Networks - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2021

Energy Efficient Neuromorphic Computing with beyond-CMOS Oscillatory Neural Networks

Résumé

Oscillatory Neural Networks (ONNs) are non-von Neumann architectures where information is encoded in phase relations between coupled oscillators. In this work, we present the concept of ONN based on beyond-CMOS devices to reduce the energy footprint of neuromorphic circuits. We investigate oscillating neurons made of vanadium dioxide material (VO2) and synapses based on molybdenum disulfide (MoS2) memristors to emulate synaptic plasticity.
Fichier principal
Vignette du fichier
ICONS_extended_abstract.pdf (505.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-03229262 , version 1 (22-09-2021)

Identifiants

  • HAL Id : lirmm-03229262 , version 1

Citer

Corentin Delacour, Stefania Carapezzi, Gabriele Boschetto, Aida Todri-Sanial. Energy Efficient Neuromorphic Computing with beyond-CMOS Oscillatory Neural Networks. ICONS 2021 - International Conference on Neuromorphic Systems, Jul 2021, Oak Ridge (Virtual), United States. ⟨lirmm-03229262⟩
292 Consultations
134 Téléchargements

Partager

More