Energy Efficient Neuromorphic Computing with beyond-CMOS Oscillatory Neural Networks - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2021

Energy Efficient Neuromorphic Computing with beyond-CMOS Oscillatory Neural Networks

Abstract

Oscillatory Neural Networks (ONNs) are non-von Neumann architectures where information is encoded in phase relations between coupled oscillators. In this work, we present the concept of ONN based on beyond-CMOS devices to reduce the energy footprint of neuromorphic circuits. We investigate oscillating neurons made of vanadium dioxide material (VO2) and synapses based on molybdenum disulfide (MoS2) memristors to emulate synaptic plasticity.
Fichier principal
Vignette du fichier
ICONS_extended_abstract.pdf (505.81 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-03229262 , version 1 (22-09-2021)

Identifiers

  • HAL Id : lirmm-03229262 , version 1

Cite

Corentin Delacour, Stefania Carapezzi, Gabriele Boschetto, Aida Todri-Sanial. Energy Efficient Neuromorphic Computing with beyond-CMOS Oscillatory Neural Networks. ICONS 2021 - International Conference on Neuromorphic Systems, Jul 2021, Oak Ridge (Virtual), United States. ⟨lirmm-03229262⟩
273 View
112 Download

Share

More