A New Hybrid Kinematic/Dynamic Whole-Body Control for Humanoid Robots With Real-Time Experiments
Abstract
In this paper, a new hybrid kinematic/dynamic control scheme for humanoid robots is proposed. Its basic idea lies in the tracking of several values in both operational and joint spaces. These values include (i) the relative pose of the robot's feet, (ii) the position of the center of mass, (iii) the body's orientation and (iv) the admissible range of variation of the joints. A zero moment point (ZMP) based dynamic feedback is included in the proposed scheme to improve the stability of dynamic motions. The proposed stabilizer is based on a spherical projection of a nonlinear PID regulation control law. Through the proposed study, it is shown that these objectives allow to produce smooth dynamically stable whole-body motions. The effectiveness and robustness of the proposed control scheme is demonstrated through four real-time experimental scenarios, conducted on HOAP-3 humanoid robot.
Origin | Files produced by the author(s) |
---|