An Assistive Explicit Model Predictive Control Framework for a Knee Rehabilitation Exoskeleton - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue IEEE/ASME Transactions on Mechatronics Année : 2022

An Assistive Explicit Model Predictive Control Framework for a Knee Rehabilitation Exoskeleton

Résumé

This article focuses on the control of an actuated knee joint orthosis. The proposed solution is a novel model predictive control framework dedicated to assistive and rehabilitation purposes. This framework includes 1) an exact input-to-state feedback linearization, 2) a model predictive controller (MPC or EMPC), considering input/output constraints, 3) a least-squares dynamic parameters identification, 4) a nonlinear disturbance observer for the estimation of the wearer's torque, 5) a Lyapunov-based stability analysis of the resulting closed-loop system, and 6) a reference trajectory generator. The proposed framework has been validated via real-time experiments performed on three healthy subjects wearing the knee joint orthosis. Various experimental scenarios have been considered, including assistive and resistive rehabilitation tasks in a sitting position and walking with normal/abnormal gait patterns. The obtained results indicate the efficiency of the proposed predictive controllers with respect to a conventional proportional-integral-derivative (PID) controller in terms of tracking performance, required torque, and wearer comfort.
Fichier principal
Vignette du fichier
FINAL_VERSION.pdf (3.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-03495187 , version 1 (20-12-2021)

Identifiants

Citer

Ines Jammeli, Ahmed Chemori, Huiseok Moon, Salwa Elloumi, Samer Mohammed. An Assistive Explicit Model Predictive Control Framework for a Knee Rehabilitation Exoskeleton. IEEE/ASME Transactions on Mechatronics, 2022, 27 (5), pp.3636-3647. ⟨10.1109/TMECH.2021.3126674⟩. ⟨lirmm-03495187⟩
210 Consultations
515 Téléchargements

Altmetric

Partager

More