2-distance 4-coloring of planar subcubic graphs with girth at least 21
Résumé
A $2$-distance $k$-coloring of a graph is a proper vertex $k$-coloring where vertices at distance at most 2 cannot share the same color. We prove the existence of a $2$-distance $4$-coloring for planar subcubic graphs with girth at least 21. We also show a construction of a planar subcubic graph of girth 11 that is not $2$-distance $4$-colorable.
Origine | Fichiers produits par l'(les) auteur(s) |
---|