Macsum Aggregation Learning and Missing Values - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2024

Macsum Aggregation Learning and Missing Values

Agrégation Macsum et données manquantes

Olivier Strauss
Agnès Rico
  • Function : Author
  • PersonId : 858630
  • IdHAL : agnes-rico

Abstract

In recent work, a new kind of aggregation method has been proposed under the name of MacSum aggregation function that can be viewed as an interval valued aggregation function that is controlled by a precise vector of weights. This aggregation can be seen as a real valued extension of the possibility based aggregation. In this article, we show that a MacSum aggregation can be learned by using an input-output database where some input vectors have missing values.
Fichier principal
Vignette du fichier
esquaru2023.pdf (1015.38 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-04798207 , version 1 (22-11-2024)

Identifiers

Cite

Olivier Strauss, Agnès Rico. Macsum Aggregation Learning and Missing Values. ECSQARU 2023 - 17th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Bouraoui, Z.; Vesic, S., Sep 2023, Arras, France. pp.453-463, ⟨10.1007/978-3-031-45608-4_34⟩. ⟨lirmm-04798207⟩
0 View
0 Download

Altmetric

Share

More