Contribution au calcul sur GPU: considérations arithmétiques et architecturales
Abstract
L’optimisation du calcul passe par une gestion conjointe du matériel et du logiciel. Cette règle se trouve renforcée lorsque l’on aborde le domaine des architectures multicoeurs où les paramètres à considérer sont plus nombreux que sur une architecture superscalaire classique. Ces architectures offrent une grande variété d’unité de calcul, de format de représentation, de hiérarchie mémoire et de mécanismes de transfert de donnée.
Dans ce mémoire, nous décrivons quelques-uns de nos résultats obtenus entre 2004 et 2013 au sein de l'équipe DALI de l'Université de Perpignan relatifs à l'amélioration de l’efficacité du calcul dans sa globalité, c'est-à-dire dans la suite d’opérations décrite au niveau algorithmique et exécutées par les éléments architecturaux, en nous concentrant sur les processeurs graphiques.
Nous commençons par une description du fonctionnement de ce type d'architecture, en nous attardant sur le calcul flottant. Nous présentons ensuite des implémentations efficaces d'opérateurs arithmétiques utilisant des représentations non-conventionnelles comme l'arithmétique multiprécision, par intervalle, floue ou logarithmique. Nous continuerons avec nos contributions relatives aux éléments architecturaux associés au calcul à travers la simulation fonctionnelle, les bancs de registres, la gestion des branchements ou les opérateurs matériels spécialisés. Enfin, nous terminerons avec une analyse du comportement du calcul sur les GPU relatif à la régularité, à la consommation électrique, à la fiabilisation des calculs ainsi qu'à la
prédictibilité.
Loading...