Robust Nonlinear Continuous-Time State Estimation Using Interval Taylor Models

Tarek Raissi 1 Nacim Ramdani 2, 3 Yves Candau 4
2 DEMAR - Artificial movement and gait restoration
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
3 IDH - Interactive Digital Humans
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : In this paper, state estimation for non-linear continuous-time systems is considered in a bounded-error context. The studied systems are described by ordinary differential equations for which explicit solutions are not available. The state estimator built in this paper relies on a validated integration of the ordinary differential equations using Taylor models and on set inversion. This estimator generates the set of all state vectors that are consistent with the modelling hypotheses, the measured data and the noise prior bounds. This property makes the use of this estimator suitable in the field of robust control. To render this algorithm efficient when the initial state is approximately known, consistency techniques are used. An illustrative example is presented.
Type de document :
Communication dans un congrès
ROCOND'06: 5th IFAC Symposium on Robust Control Design, 2006, pp.CDROM, 2006
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00119388
Contributeur : Nacim Ramdani <>
Soumis le : vendredi 8 décembre 2006 - 22:43:45
Dernière modification le : jeudi 11 janvier 2018 - 16:20:39

Identifiants

  • HAL Id : lirmm-00119388, version 1

Citation

Tarek Raissi, Nacim Ramdani, Yves Candau. Robust Nonlinear Continuous-Time State Estimation Using Interval Taylor Models. ROCOND'06: 5th IFAC Symposium on Robust Control Design, 2006, pp.CDROM, 2006. 〈lirmm-00119388〉

Partager

Métriques

Consultations de la notice

437