Skip to Main content Skip to Navigation
Conference papers

Online Pathological Tremor Characterization Using Extended Kalman Filtering

Antonio Bo 1 Philippe Poignet 2 Ferdinan Widjaja 3 Wei Tech Ang 3 
2 DEMAR - Artificial movement and gait restoration
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This paper describes different algorithms that perform online pathological tremor characterization. Two distinct nonstationary parametric models are used, an Auto-Regressive (AR) model and an harmonic model. The models are recursively estimated with Extended Kalman Filters (EKFs). Experimental data was obtained with low cost accelerometers and the results are compared in terms of spectrogram estimation and prediction performance.
Document type :
Conference papers
Complete list of metadata

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00288836
Contributor : Philippe Poignet Connect in order to contact the contributor
Submitted on : Wednesday, June 18, 2008 - 4:47:25 PM
Last modification on : Tuesday, September 6, 2022 - 4:55:38 PM

Identifiers

Citation

Antonio Bo, Philippe Poignet, Ferdinan Widjaja, Wei Tech Ang. Online Pathological Tremor Characterization Using Extended Kalman Filtering. EMBC: Engineering in Medicine and Biology Conference, Aug 2008, Vancouver, BC, Canada. pp.1753-1756, ⟨10.1109/IEMBS.2008.4649516⟩. ⟨lirmm-00288836⟩

Share

Metrics

Record views

117