Maximum Likelihood Supertrees - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Systematic Biology Année : 2008

Maximum Likelihood Supertrees

Résumé

We analyze a maximum likelihood approach for combining phylogenetic trees into a larger "supertree." This is based on a simple exponential model of phylogenetic error, which ensures that ML supertrees have a simple combinatorial description (as a median tree, minimizing a weighted sum of distances to the input trees). We show that this approach to ML supertree reconstruction is statistically consistent (it converges on the true species supertree as more input trees are combined), in contrast to the widely used MRP method, which we show can be statistically inconsistent under the exponential error model. We also show that this statistical consistency extends to an ML approach for constructing species supertrees from gene trees. In this setting, incomplete lineage sorting (due to coalescence rates of homologous genes being lower than speciation rates) has been shown to lead to gene trees that are frequently different from species trees, and this can confound efforts to reconstruct the species phylogeny correctly.
Fichier principal
Vignette du fichier
57-2-243.pdf (139.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00335162 , version 1 (11-09-2020)

Licence

Identifiants

Citer

Mike Steel, Allen Rodrigo. Maximum Likelihood Supertrees. Systematic Biology, 2008, 57, pp.243-250. ⟨10.1080/10635150802033014⟩. ⟨lirmm-00335162⟩
99 Consultations
44 Téléchargements

Altmetric

Partager

More