Extraction of Unexpected Sentences: A Sentiment Classification Assessed Approach

Abstract : Sentiment classification in text documents is an active data mining research topic in opinion retrieval and analysis. Different from previous studies concentrating on the development of effective classifiers, in this paper, we focus on the extraction and validation of unexpected sentences issued in sentiment classification. In this paper, we propose a general framework for determining unexpected sentences. The relevance of the extracted unexpected sentences is assessed in the context of text classification. In the experiments, we present the extraction of unexpected sentences for sentiment classification within the proposed framework, and then evaluate the influence of unexpected sentences on the quality of classification tasks. The experimental results show the effectiveness and usefulness of our proposed approach.
Type de document :
Article dans une revue
Intelligent Data Analysis, IOS Press, 2010, 14 (1), pp.31-46
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00401363
Contributeur : Haoyuan Li <>
Soumis le : jeudi 2 juillet 2009 - 21:47:34
Dernière modification le : jeudi 24 mai 2018 - 15:59:23

Identifiants

  • HAL Id : lirmm-00401363, version 1

Collections

Citation

Haoyuan Li, Anne Laurent, Pascal Poncelet, Mathieu Roche. Extraction of Unexpected Sentences: A Sentiment Classification Assessed Approach. Intelligent Data Analysis, IOS Press, 2010, 14 (1), pp.31-46. 〈lirmm-00401363〉

Partager

Métriques

Consultations de la notice

107