A Structurally Optimal Control Model for Predicting and Analyzing Human Postural Coordination - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Journal of Biomechanics Année : 2011

A Structurally Optimal Control Model for Predicting and Analyzing Human Postural Coordination

Résumé

This paper proposes a closed-loop optimal control model predicting changes between in-phase and anti-phase postural coordination during standing and related supra-postural activities. The model allows the evaluation of the influence of body dynamics and balance constraints onto the adoption of postural coordination. This model minimizes the instantaneous norm of the joint torques with a controller in the head space, in contrast with classical linear optimal models used in the postural literature and defined in joint space. The balance constraint is addressed with an adaptive ankle torque saturation. Numerical simulations showed that the model was able to predict changes between in-phase and anti-phase postural coordination modes and other non-linear transient dynamics phenomena.

Dates et versions

lirmm-00609097 , version 1 (18-07-2011)

Identifiants

Citer

Vincent Bonnet, Sofiane Ramdani, Philippe Fraisse, Nacim Ramdani, Julien Lagarde, et al.. A Structurally Optimal Control Model for Predicting and Analyzing Human Postural Coordination. Journal of Biomechanics, 2011, 44 (11), pp.2123-2128. ⟨10.1016/j.jbiomech.2011.05.027⟩. ⟨lirmm-00609097⟩
287 Consultations
0 Téléchargements

Altmetric

Partager

More