Skip to Main content Skip to Navigation
Conference papers

Automatic Titling of Articles Using Position and Statistical Information

Cédric Lopez 1 Violaine Prince 1 Mathieu Roche 1, * 
* Corresponding author
1 TEXTE - Exploration et exploitation de données textuelles
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : This paper describes a system facilitating information retrieval in a set of textual documents by tackling the automatic titling and subtitling issue. Automatic titling here consists in extracting relevant noun phrases from texts as candidate titles. An original approach combining statistical criteria and noun phrases positions in the text helps collecting relevant titles and subtitles. So, the user may benefit from an outline of all the subjects evoked in a mass of documents, and easily find the information he/she is looking for. An evaluation on real data shows that the solutions given by this automatic titling approach are relevant.
Document type :
Conference papers
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download
Contributor : Cédric Lopez Connect in order to contact the contributor
Submitted on : Thursday, November 3, 2011 - 2:04:08 PM
Last modification on : Friday, August 5, 2022 - 3:03:22 PM
Long-term archiving on: : Saturday, February 4, 2012 - 2:25:50 AM


Files produced by the author(s)


  • HAL Id : lirmm-00637975, version 1



Cédric Lopez, Violaine Prince, Mathieu Roche. Automatic Titling of Articles Using Position and Statistical Information. RANLP'11: Recent Advances in Natural Language Processing, Dec 2011, Hissar, Bulgaria. pp.727-732. ⟨lirmm-00637975⟩



Record views


Files downloads