Hybred: An OCR Document Representation for Classification Tasks - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue International Journal of Computer Science Issues Année : 2011

Hybred: An OCR Document Representation for Classification Tasks

Résumé

The classification of digital documents is a complex task in a document analysis flow. The amount of documents resulting from the OCR retro-conversion (optical character recognition) makes the classification task harder. In the literature, different features are used to improve the classification quality. In this paper, we evaluate various features on OCRed and non OCRed documents. Thanks to this evaluation, we propose the HYBRED (HYBrid REpresentation of Documents) approach which combines different features in a single relevant representation. The experiments conducted on real data show the interest of this approach.
Fichier principal
Vignette du fichier
IJCSI-8-3-2-1.pdf (115.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

lirmm-00723581 , version 1 (10-08-2012)

Identifiants

  • HAL Id : lirmm-00723581 , version 1

Citer

Sami Laroum, Nicolas Béchet, Hatem Hamza, Mathieu Roche. Hybred: An OCR Document Representation for Classification Tasks. International Journal of Computer Science Issues, 2011, 8 (3), pp.1-8. ⟨lirmm-00723581⟩
358 Consultations
1156 Téléchargements

Partager

More