Fast and Robust Semi-Local Stereo Matching Using Possibility Distributions - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue International Journal of Computational Vision and Robotics Année : 2011

Fast and Robust Semi-Local Stereo Matching Using Possibility Distributions

Résumé

Global stereo matching methods aim to reduce the sensibility of stereo correspondence to ambiguities caused by occlusions, poor local texture or fluctuation of illumination. However, when facing the problem of real-time stereo matching, as in robotic vision, local algorithms are known to be the best. In this paper, we propose a semi-local stereo matching algorithm (SLSM algorithm); an area-based method that embodies global matching constraints in the matching score. Our approach uses a fuzzy formularisation of the similarity assumption in order to define a matching possibility distribution. An unmatching possibility distribution is defined by applying global constraints to the matching possibility distribution. The final matching cost is computed using the two possibility distributions. Experimental results and comparison with other existing algorithms are presented to demonstrate the performance and effectiveness of our approach.
Fichier principal
Vignette du fichier
X_GHAZOUANI.pdf (359.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-00738216 , version 1 (03-10-2012)

Identifiants

Citer

Haythem Ghazouani, Moncef Tagina, René Zapata. Fast and Robust Semi-Local Stereo Matching Using Possibility Distributions. International Journal of Computational Vision and Robotics, 2011, 2 (3), pp.237-253. ⟨10.1504/IJCVR.2011.042841⟩. ⟨lirmm-00738216⟩
243 Consultations
452 Téléchargements

Altmetric

Partager

More