Steganalysis by Ensemble Classifiers with Boosting by Regression, and Post-Selection of Features - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2012

Steganalysis by Ensemble Classifiers with Boosting by Regression, and Post-Selection of Features

Marc Chaumont
Sarra Kouider
  • Fonction : Auteur
  • PersonId : 942964

Résumé

In this paper we extend the state-of-the-art steganalysis tool developed by Kodovsky and Fridrich: the Kodovsky's ensem-ble classifiers. We propose to boost the weak classifiers com-posing the Kodovsky classifier. For this, we minimize the probability of error thanks to a regression approach of low complexity. We also propose a post-selection of features, achieved after the learning step of all the weak classifiers. For each weak classifier, we identify a subset of features reducing the probability of error. Both proposals are of neg-ligeable complexity compared to the complexity of the Kodovsky classifier. Moreover, these two proposals significantly increase the performance of classification.
Fichier principal
Vignette du fichier
ICIP2012-CHAUMONT-KOUIDER_Boosting_Selection_Ensemble_Classifier_-_Version_GrandePolice.pdf (257.74 Ko) Télécharger le fichier
ICIP2012-CHAUMONT-KOUIDER_Boosting_Selection_Ensemble_Classifier-slides.pdf (517.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre
Loading...

Dates et versions

lirmm-00838995 , version 1 (01-07-2013)

Identifiants

Citer

Marc Chaumont, Sarra Kouider. Steganalysis by Ensemble Classifiers with Boosting by Regression, and Post-Selection of Features. ICIP: International Conference on Image Processing, Sep 2012, Orlando, FL, United States. pp.1133-1136, ⟨10.1109/ICIP.2012.6467064⟩. ⟨lirmm-00838995⟩
159 Consultations
633 Téléchargements

Altmetric

Partager

More