Towards interval-based non-additive deconvolution in signal processing

Olivier Strauss 1 Agnès Rico 2
1 ICAR - Image & Interaction
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Reconstructing a signal from its observations via a sensor device is usually called "deconvolution". Such reconstruction requires perfect knowledge of the impulse response of the sensor involved in the signal measurement. The lower this knowledge, the more biased the reconstruction. In this paper, we present a novel method for reconstructing a signal measured by a sensor whose impulse response is imprecisely known. This technique is based on modeling the relationship between the measurement and the signal via a concave capacity and extending the convolution concept to a concave set of impulse responses. The reconstructed signal is interval-valued, thus reflecting the poor knowledge of the sensor impulse response.
Type de document :
Article dans une revue
Soft Computing, Springer Verlag, 2012, 16 (5), pp.809-820. 〈10.1007/s00500-011-0771-7〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00857417
Contributeur : Olivier Strauss <>
Soumis le : mardi 10 septembre 2013 - 14:01:01
Dernière modification le : jeudi 24 mai 2018 - 15:59:23
Document(s) archivé(s) le : jeudi 12 décembre 2013 - 10:06:50

Fichier

IntervalDeconvolutionSoCo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olivier Strauss, Agnès Rico. Towards interval-based non-additive deconvolution in signal processing. Soft Computing, Springer Verlag, 2012, 16 (5), pp.809-820. 〈10.1007/s00500-011-0771-7〉. 〈lirmm-00857417〉

Partager

Métriques

Consultations de la notice

630

Téléchargements de fichiers

205