Dynamic Workload-Based Partitioning Algorithms for Continuously Growing Databases

Abstract : Applications with very large databases, where data items are continuously appended, are becoming more and more common. Thus, the development of efficient data partitioning is one of the main requirements to yield good performance. In the case of applications that have complex access patterns, e.g. scientific applications, workload-based partitioning could be exploited. However, existing workload-based approaches, which work in a static way, cannot be applied to very large databases. In this paper, we propose DynPart and DynPartGroup, two dynamic partitioning algorithms for continuously growing databases. These algorithms efficiently adapt the data partitioning to the arrival of new data elements by taking into account the affinity of new data with queries and fragments. In contrast to existing static approaches, our approach offers constant execution time, no matter the size of the database, while obtaining very good partitioning efficiency. We validated our solution through experimentation over real-world data; the results show its effectiveness.
Type de document :
Article dans une revue
Transactions on Large-Scale Data- and Knowledge-Centered Systems, Springer Berlin / Heidelberg, 2014, pp.105
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00906966
Contributeur : Miguel Liroz-Gistau <>
Soumis le : mercredi 20 novembre 2013 - 15:30:56
Dernière modification le : jeudi 24 mai 2018 - 15:59:21
Document(s) archivé(s) le : vendredi 21 février 2014 - 04:32:45

Fichier

tldks.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00906966, version 1

Collections

Citation

Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fabio Porto, Patrick Valduriez. Dynamic Workload-Based Partitioning Algorithms for Continuously Growing Databases. Transactions on Large-Scale Data- and Knowledge-Centered Systems, Springer Berlin / Heidelberg, 2014, pp.105. 〈lirmm-00906966〉

Partager

Métriques

Consultations de la notice

682

Téléchargements de fichiers

653