Contextual Itemset Mining in DBpedia - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2014

Contextual Itemset Mining in DBpedia

Abstract

In this paper we show the potential of contextual itemset mining in the context of Linked Open Data. Contextual itemset mining extracts frequent associations among items considering background information. In the case of Linked Open Data, the background information is represented by an Ontology defined over the data. Each resulting itemset is specific to a particular context and contexts can be related each others following the ontological structure. We use contextual mining on DBpedia data and show how the use of contextual information can refine the itemsets obtained by the knowledge discovery process.
Fichier principal
Vignette du fichier
paper3.pdf (296.99 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

lirmm-01076887 , version 1 (23-10-2014)

Identifiers

Cite

Julien Rabatel, Madalina Croitoru, Dino Ienco, Pascal Poncelet. Contextual Itemset Mining in DBpedia. LD4KD: Linked Data for Knowledge Discovery, Sep 2014, Nancy, France. pp.27-36. ⟨lirmm-01076887⟩
480 View
312 Download

Share

Gmail Facebook X LinkedIn More