Skip to Main content Skip to Navigation
Conference papers

Contextual Itemset Mining in DBpedia

Julien Rabatel 1, 2 Madalina Croitoru 3 Dino Ienco 2, 4 Pascal Poncelet 2 
2 ADVANSE - ADVanced Analytics for data SciencE
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this paper we show the potential of contextual itemset mining in the context of Linked Open Data. Contextual itemset mining extracts frequent associations among items considering background information. In the case of Linked Open Data, the background information is represented by an Ontology defined over the data. Each resulting itemset is specific to a particular context and contexts can be related each others following the ontological structure. We use contextual mining on DBpedia data and show how the use of contextual information can refine the itemsets obtained by the knowledge discovery process.
Complete list of metadata

Cited literature [18 references]  Display  Hide  Download
Contributor : Julien Rabatel Connect in order to contact the contributor
Submitted on : Thursday, October 23, 2014 - 1:57:19 PM
Last modification on : Friday, August 5, 2022 - 3:03:00 PM
Long-term archiving on: : Saturday, January 24, 2015 - 10:26:15 AM


Publisher files allowed on an open archive


  • HAL Id : lirmm-01076887, version 1
  • IRSTEA : PUB00054287


Julien Rabatel, Madalina Croitoru, Dino Ienco, Pascal Poncelet. Contextual Itemset Mining in DBpedia. LD4KD: Linked Data for Knowledge Discovery, Sep 2014, Nancy, France. pp.27-36. ⟨lirmm-01076887⟩



Record views


Files downloads