Aggregation-Aware Compression of Probabilistic Streaming Time Series

Reza Akbarinia 1 Florent Masseglia 1
1 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In recent years, there has been a growing interest for probabilistic data management. We focus on probabilistic time series where a main characteristic is the high volumes of data, calling for efficient compression techniques. To date, most work on probabilistic data reduction has provided synopses that minimize the error of representation w.r.t. the original data. However, in most cases, the compressed data will be meaningless for usual queries involving aggregation operators such as SUM or AVG. We propose PHA (Probabilistic Histogram Aggregation), a compression technique whose objective is to minimize the error of such queries over compressed probabilistic data. We incorporate the aggregation operator given by the end-user directly in the compression technique, and obtain much lower error in the long term. We also adopt a global error aware strategy in order to manage large sets of probabilistic time series, where the available memory is carefully balanced between the series, according to their individual variability.
Type de document :
Communication dans un congrès
MLDM'2015: International Conference on Machine Learning and Data Mining, Jul 2015, Hamburg, Germany
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01162366
Contributeur : Reza Akbarinia <>
Soumis le : mercredi 10 juin 2015 - 12:12:53
Dernière modification le : jeudi 24 mai 2018 - 15:59:21
Document(s) archivé(s) le : mardi 25 avril 2017 - 06:23:52

Fichier

pha_mldm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01162366, version 1

Collections

Citation

Reza Akbarinia, Florent Masseglia. Aggregation-Aware Compression of Probabilistic Streaming Time Series. MLDM'2015: International Conference on Machine Learning and Data Mining, Jul 2015, Hamburg, Germany. 〈lirmm-01162366〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

293