On Residual Approximation in Solution Extension Problems

Mathias Weller 1, 2 Annie Chateau 2 Rodolphe Giroudeau 3 Jean-Claude König 3 Valentin Pollet 3
2 MAB - Méthodes et Algorithmes pour la Bioinformatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 MAORE - Méthodes Algorithmes pour l'Ordonnancement et les Réseaux
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : The solution extension variant of a problem consists in, being given an instance and a partial solution, finding the best solution comprising the given partial solution. Many problems have been studied with a similar approach. For instance the Precoloring Extension problem, the clustered variant of the Travelling Salesman problem, or the General Routing Problem are in a way typical examples of solution extension variant problems. Motivated by practical applications of such variants, this work aims to explore different aspects around extension on classical optimization problems. We define residue-approximations as algorithms whose performance ratio on the non-prescribed part can be bounded, and corresponding complexity classes. Using residue-approximation, we classify several problems according to their residue-approximability.
Document type :
Conference papers
Complete list of metadatas

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01378581
Contributor : Rodolphe Giroudeau <>
Submitted on : Monday, October 10, 2016 - 2:26:32 PM
Last modification on : Wednesday, July 10, 2019 - 5:09:43 PM

Identifiers

Collections

Citation

Mathias Weller, Annie Chateau, Rodolphe Giroudeau, Jean-Claude König, Valentin Pollet. On Residual Approximation in Solution Extension Problems. COCOA: Conference on Combinatorial Optimization and Applications, Dec 2016, Hong Kong, China. pp.463-476, ⟨10.1007/978-3-319-48749-6_34⟩. ⟨lirmm-01378581⟩

Share

Metrics

Record views

210