Differential Analysis of Muscle Fatigue Induced Elbow and Wrist Tremor in Controlled Laparoscopic Manoeuvring
Résumé
Background: Fatigue induced hand tremor (FIT) is a primary limiting concern for the prolonged surgical intervention in minimally invasive surgery (MIS) and robot-assisted-minimally invasive surgery (RAMIS). A thorough analysis is necessary to understand the FIT characteristics in laparoscopic tool movement. The primary aim of this study is to perform a differential analysis of the elbow and wrist tremor due to muscle fatigue in laparoscopic manoeuvring.
Methods: We have introduced a joint angle based tremor analysis method, which enables us to perform a differential study of FIT characteristics at the individual joint. Experimental data was acquired from a group of subjects during static and dynamic laparoscopic movement in an imitative RAMIS master manipulation scenario. A repetitive task was performed with a total span of 1 h for observing the effect of muscle fatigue. Along with the joint angle variation, surface electromyography (sEMG) signal was also studied in the analysis.
Results: The wrist tremor is more predominant than tremor generated at the elbow, especially in highly fatigued condition. The high-frequency tremor (>4 Hz) is contributed by the wrist joint. Moreover, the variation of the wrist and elbow tremor ratio was found to be dependent upon the experience of the surgeons.
Conclusions: In this work, we have investigated the attribution of elbow and wrist joints in FIT during laparoscopic tool manipulation. The outcomes may be useful for the design of robot-assisted surgical manipulator, and can be used for quality assessment of surgical training as well.