TARS: An Array Model with Rich Semantics for Multidimensional Data

Hermano Lustosa 1 Noel Lemus 1 Fabio Porto 1 Patrick Valduriez 2, 3
2 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Relational DBMSs have been shown to be inefficient for scientific data management. One main reason is the difficulty to represent arrays, which are frequently adopted as a data model for scientific datasets representation. Array DBMSs, e.g. SciDB, were proposed to bridge this gap, building on a native array representation. Unfortunately, important scientific applications, such as numerical simulation, have additional requirements , in particular to deal with mesh topology and geometry. First, transforming simulation results datasets into DBMS array format incurs in huge latency due to the fixed format of array DBMSs layouts and data transformations to adapt to mesh data characteristics. Second, simulation applications require data visualization or computing uncertainty quantifi-cation (UQ), both requiring metadata beyond the simulation output array. To address these problems, we propose a novel data model called TARS (Typed ARray Schema), which extends the basic array data model with typed arrays. In TARS, the support of application dependent data characteristics , such as data visualization and UQ computation, is provided through the definition of TAR objects, ready to be manipulated by TAR operators. This approach provides much flexibility for capturing internal data layouts through mapping functions, which makes data ingestion independent of how simulation data has been produced, thus minimizing ingestion time. In this paper, we present the TARS data model and illustrate its use in the context of numerical simulation application.
Type de document :
Communication dans un congrès
ER FORUM 2017: Conceptual Modeling : Research In Progress, Nov 2017, Valencia, Spain. 2017
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620376
Contributeur : Patrick Valduriez <>
Soumis le : vendredi 20 octobre 2017 - 14:56:08
Dernière modification le : mercredi 10 octobre 2018 - 14:28:13
Document(s) archivé(s) le : dimanche 21 janvier 2018 - 14:16:15

Fichier

er2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01620376, version 1

Collections

Citation

Hermano Lustosa, Noel Lemus, Fabio Porto, Patrick Valduriez. TARS: An Array Model with Rich Semantics for Multidimensional Data. ER FORUM 2017: Conceptual Modeling : Research In Progress, Nov 2017, Valencia, Spain. 2017. 〈lirmm-01620376〉

Partager

Métriques

Consultations de la notice

196

Téléchargements de fichiers

90