Computation of PDFs on Big Spatial Data: Problem & Architecture

Ji Liu 1 Noel Lemus 2 Esther Pacitti 1 Fábio Porto 2 Patrick Valduriez 1
1 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Big spatial data can be produced by observation or numerical simulation programs and correspond to points that represent a 3D soil cube area. However, errors in signal processing and modeling create some uncertainty, and thus a lack of accuracy in identifying geological or seismic phenomenons. To analyze uncertainty, the main solution is to compute a Probability Density Function (PDF) of each point in the spatial cube area, which can be very time consuming. In this paper, we analyze the problem and discuss the use of Spark to efficiently compute PDFs.
Complete list of metadatas

Cited literature [12 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01867758
Contributor : Patrick Valduriez <>
Submitted on : Tuesday, September 4, 2018 - 3:44:12 PM
Last modification on : Tuesday, February 19, 2019 - 10:38:45 AM
Long-term archiving on: Wednesday, December 5, 2018 - 4:59:01 PM

File

LaDAS Ji.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : lirmm-01867758, version 1

Collections

Citation

Ji Liu, Noel Lemus, Esther Pacitti, Fábio Porto, Patrick Valduriez. Computation of PDFs on Big Spatial Data: Problem & Architecture. LADaS: Latin America Data Science Workshop, Aug 2018, Rio de Janeiro, Brazil. pp.6. ⟨lirmm-01867758⟩

Share

Metrics

Record views

431

Files downloads

65