Skip to Main content Skip to Navigation
Conference papers

Computation of PDFs on Big Spatial Data: Problem & Architecture

Ji Liu 1 Noel Lemus 2 Esther Pacitti 1 Fábio Porto 2 Patrick Valduriez 1 
1 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Big spatial data can be produced by observation or numerical simulation programs and correspond to points that represent a 3D soil cube area. However, errors in signal processing and modeling create some uncertainty, and thus a lack of accuracy in identifying geological or seismic phenomenons. To analyze uncertainty, the main solution is to compute a Probability Density Function (PDF) of each point in the spatial cube area, which can be very time consuming. In this paper, we analyze the problem and discuss the use of Spark to efficiently compute PDFs.
Complete list of metadata

Cited literature [12 references]  Display  Hide  Download
Contributor : Patrick Valduriez Connect in order to contact the contributor
Submitted on : Tuesday, September 4, 2018 - 3:44:12 PM
Last modification on : Friday, August 5, 2022 - 3:03:28 PM
Long-term archiving on: : Wednesday, December 5, 2018 - 4:59:01 PM


LaDAS Ji.pdf
Files produced by the author(s)


  • HAL Id : lirmm-01867758, version 1


Ji Liu, Noel Lemus, Esther Pacitti, Fábio Porto, Patrick Valduriez. Computation of PDFs on Big Spatial Data: Problem & Architecture. Latin America Data Science Workshop (LADaS 2018), Aug 2018, Rio de Janeiro, Brazil. pp.80-83. ⟨lirmm-01867758⟩



Record views


Files downloads