Computation of PDFs on Big Spatial Data: Problem & Architecture - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2018

Computation of PDFs on Big Spatial Data: Problem & Architecture

Abstract

Big spatial data can be produced by observation or numerical simulation programs and correspond to points that represent a 3D soil cube area. However, errors in signal processing and modeling create some uncertainty, and thus a lack of accuracy in identifying geological or seismic phenomenons. To analyze uncertainty, the main solution is to compute a Probability Density Function (PDF) of each point in the spatial cube area, which can be very time consuming. In this paper, we analyze the problem and discuss the use of Spark to efficiently compute PDFs.
Fichier principal
Vignette du fichier
LaDAS Ji.pdf (480.42 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01867758 , version 1 (04-09-2018)

Identifiers

  • HAL Id : lirmm-01867758 , version 1

Cite

Ji Liu, Noel Lemus, Esther Pacitti, Fábio Porto, Patrick Valduriez. Computation of PDFs on Big Spatial Data: Problem & Architecture. Latin America Data Science Workshop (LADaS 2018), Aug 2018, Rio de Janeiro, Brazil. pp.80-83. ⟨lirmm-01867758⟩
215 View
108 Download

Share

More