Investigating Upper Limb Movement Classification on Users with Tetraplegia as a Possible Neuroprosthesis Interface - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2018

Investigating Upper Limb Movement Classification on Users with Tetraplegia as a Possible Neuroprosthesis Interface

Résumé

Spinal cord injury (SCI), stroke and other nervous system conditions can result in partial or total paralysis of individual's limbs. Numerous technologies have been proposed to assist neurorehabilitation or movement restoration, e.g. robotics or neuroprosthesis. However, individuals with tetraplegia often find difficult to pilot these devices. We developed a system based on a single inertial measurement unit located on the upper limb that is able to classify performed movements using principal component analysis. We analyzed three calibration algorithms: unsupervised learning, supervised learning and adaptive learning. Eight participants with tetraplegia (C4-C7) piloted three different postures in a robotic hand. We achieved 89% accuracy using the supervised learning algorithm. Through offline simulation, we found accuracies of 76% on the unsupervised learning, and 88% on the adaptive one.
Fichier principal
Vignette du fichier
FinalVersion.pdf (3.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-01900330 , version 1 (24-10-2018)

Identifiants

Citer

Lucas Fonseca, Antonio Padilha Lanari Bo, David Guiraud, Benjamin Navarro, Anthony Gélis, et al.. Investigating Upper Limb Movement Classification on Users with Tetraplegia as a Possible Neuroprosthesis Interface. EMBC 2018 - 40th International Conference of the IEEE Engineering in Medicine and Biology Society, Jul 2018, Honolulu, HI, United States. pp.5053-5056, ⟨10.1109/EMBC.2018.8513418⟩. ⟨lirmm-01900330⟩
301 Consultations
369 Téléchargements

Altmetric

Partager

More