Skip to Main content Skip to Navigation
Conference papers

Sensitivity Analysis and Compression Opportunities in DNNs Using Weight Sharing

Etienne Dupuis 1 David Novo 2 Ian O'Connor 1 Alberto Bosio 1
2 ADAC - ADAptive Computing
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Deep artificial Neural Networks (DNNs) are currently one of the most intensively and widely used predictive models in the field of machine learning. However, the computational workload involved in DNNs is typically out of reach for lowpower embedded devices. The approximate computing paradigm can be exploited to reduce the DNN complexity. It improves performance and energy-efficiency by relaxing the need for fully accurate operations. There are a large number of implementation options leveraging many approximation techniques (e.g., pruning, quantization, weight-sharing, low-rank factorization, knowledge distillation, etc.). However, to the best of our knowledge, a few or no automated approach exists to explore, select and generate the best approximate version of a given DNN according to design objectives. The goal of this paper is to demonstrate that the design space exploration phase can enable significant network compression without noticeable accuracy loss. We demonstrate this via an example based on weight sharing and show that our direct conversion method can obtain a 4.85x compression rate with 0.14% accuracy loss in ResNet18 and 4.91x compression rate with 0.44% accuracy loss in SqueezeNet without involving retraining steps.
Document type :
Conference papers
Complete list of metadata

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03054134
Contributor : David Novo <>
Submitted on : Friday, December 11, 2020 - 12:09:47 PM
Last modification on : Tuesday, December 15, 2020 - 3:32:38 AM
Long-term archiving on: : Friday, March 12, 2021 - 7:26:32 PM

File

DDESC_2020_submission_paper (1...
Files produced by the author(s)

Identifiers

Collections

Citation

Etienne Dupuis, David Novo, Ian O'Connor, Alberto Bosio. Sensitivity Analysis and Compression Opportunities in DNNs Using Weight Sharing. 23rd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Apr 2020, Novi Sad, Serbia. ⟨10.1109/DDECS50862.2020.9095658⟩. ⟨lirmm-03054134⟩

Share

Metrics

Record views

55

Files downloads

56